Gene Targeting Without DSB Induction Is Inefficient in Barley
نویسندگان
چکیده
Double strand-break (DSB) induction allowed efficient gene targeting in barley (Hordeum vulgare), but little is known about efficiencies in its absence. To obtain such data, an assay system based on the acetolactate synthase (ALS) gene was established, a target gene which had been used previously in rice and Arabidopsis thaliana. Expression of recombinases RAD51 and RAD54 had been shown to improve gene targeting in A. thaliana and positive-negative (P-N) selection allows the routine production of targeted mutants without DSB induction in rice. We implemented these approaches in barley and analysed gene targeting with the ALS gene in wild type and RAD51 and RAD54 transgenic lines. In addition, P-N selection was tested. In contrast to the high gene targeting efficiencies obtained in the absence of DSB induction in A. thaliana or rice, not one single gene targeting event was obtained in barley. These data suggest that gene targeting efficiencies are very low in barley and can substantially differ between different plants, even at the same target locus. They also suggest that the amount of labour and time would become unreasonably high to use these methods as a tool in routine applications. This is particularly true since DSB induction offers efficient alternatives. Barley, unlike rice and A. thaliana has a large, complex genome, suggesting that genome size or complexity could be the reason for the low efficiencies. We discuss to what extent transformation methods, genome size or genome complexity could contribute to the striking differences in the gene targeting efficiencies between barley, rice and A. thaliana.
منابع مشابه
Stable gene replacement in barley by targeted double-strand break induction.
Gene targeting is becoming an important tool for precision genome engineering in plants. During gene replacement, a variant of gene targeting, transformed DNA integrates into the genome by homologous recombination (HR) to replace resident sequences. We have analysed gene targeting in barley (Hordeum vulgare) using a model system based on double-strand break (DSB) induction by the meganuclease I...
متن کاملInduction of Apoptosis on K562 Cell Line and Double Strand Breaks on Colon Cancer Cell Line Expressing High Affinity Receptor for Granulocyte Macrophage-Colony Stimulating factor (GM-CSF)
Background: Immunotoxins are comprised of both the cell targeting and the cell killing moieties. We previously established a new immunotoxin, i.e. Shiga toxin granulocyte macrophage-colony stimulating factor (StxA1-GM-CSF), comprises of catalytic domain of Stx, as a killing moiety and GM-CSF, as a cell targeting moiety. In this study, the ability of the immunotoxin to induce apoptosis and dou...
متن کاملThese De Doctorat De L ’ Universite Pierre Et Marie Curie
Target-site double-strand breaks (DSBs) at natural endogenous loci were shown to increase the rate of gene replacement by homologous recombination in mouse embryonic stem cells. The effect of DSB at the dopachrome tautomerase (Dct) locus on the efficiency of gene targeting was studied using an embryonic stem cell line carrying the recognition site for the yeast I-SceI meganuclease embedded in t...
متن کاملCharacterization of Rad51 from Apicomplexan Parasite Toxoplasma gondii: An Implication for Inefficient Gene Targeting
Repairing double strand breaks (DSBs) is absolutely essential for the survival of obligate intracellular parasite Toxoplasma gondii. Thus, DSB repair mechanisms could be excellent targets for chemotherapeutic interventions. Recent genetic and bioinformatics analyses confirm the presence of both homologous recombination (HR) as well as non homologous end joining (NHEJ) proteins in this lower euk...
متن کاملCytotoxic effects and specific gene expression alterations induced by I-125-labeled triplex-forming oligonucleotides
PURPOSE Triplex-forming oligonucleotides (TFO) bind to the DNA double helix in a sequence-specific manner. Therefore, TFO seem to be a suitable carrier for Auger electron emitters to damage exclusively targeted DNA sequences, e.g., in tumor cells. We studied the influence of I-125 labeled TFO with regard to cell survival and induction of DNA double-strand breaks (DSB) using TFO with different g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016